Abstract

In this study, we evaluated the effect of temperature on the fast chlorophyll fluorescence (ChlF) transient (OJIP) and OJIP-derived parameters in Antarctic lichens Xanthoria elegans, Usnea antarctica, and Dermatocarpon polyphyllizum. Samples were exposed to a range of temperatures (-5 to +45 degrees C) and measured after 15-min equilibration. High temperature (+45 degrees C) caused a decrease of ChlF, an increased J-step, and shortened time to reach peak ChlF (FP). Temperature below +5 degrees C caused the increase of ChlF and J-step. The K-band was identified in X. elegans (above +20 degrees C), U. antarctica (+35 degrees C), and D. polyphyllizum (+45 degrees C). L-band was well distinguishable in X. elegans (+45 degrees C). As indicated by the OJIP-derived parameters, high temperature inhibited photosystem II function. The inhibition was apparent as less effective energetic connectivity. The OJIP transients and auxiliary measurement of ChlF temperature curves suggested that X. elegans had the lowest termostability among the experimental species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.