Abstract

The existing classification of homogeneous quaternionic spaces is not complete. We study these spaces in the context of certainN=2 supergravity theories, where dimensional reduction induces a mapping betweenspecial real, Kähler and quaternionic spaces. The geometry of the real spaces is encoded in cubic polynomials, those of the Kähler and quaternionic manifolds in homogeneous holomorphic functions of second degree. We classify all cubic polynomials that have an invariance group that acts transitively on the real manifold. The corresponding Kähler and quaternionic manifolds are then homogeneous. We find that they lead to a well-defined subset of the normal quaternionic spaces classified by Alekseevskiî (and the corresponding special Kähler spaces given by Cecotti), but there is a new class of rank-3 spaces of quaternionic dimension larger than 3. We also point out that some of the rank-4 Alekseevskiî spaces were not fully specified and correspond to a finite variety of inequivalent spaces. A simpler version of the equation that underlies the classification of this paper also emerges in the context ofW 3 algebras.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.