Abstract

We develop a theory of "special functions" associated to a certain fourth order differential operator $\mathcal{D}_{\mu,\nu}$ on $\mathbb{R}$ depending on two parameters $\mu,\nu$. For integers $\mu,\nu\geq-1$ with $\mu+\nu\in2\mathbb{N}_0$ this operator extends to a self-adjoint operator on $L^2(\mathbb{R}_+,x^{\mu+\nu+1}dx)$ with discrete spectrum. We find a closed formula for the generating functions of the eigenfunctions, from which we derive basic properties of the eigenfunctions such as orthogonality, completeness, $L^2$-norms, integral representations and various recurrence relations. This fourth order differential operator $\mathcal{D}_{\mu,\nu}$ arises as the radial part of the Casimir action in the Schr\"odinger model of the minimal representation of the group $O(p,q)$, and our "special functions" give $K$-finite vectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call