Abstract
We will analyze the relationships between the special fibres of a pencil Λ of plane curve singularities and the Jacobian curve J of Λ (defined by the zero locus of the Jacobian determinant for any fixed basis ′ ∈ Λ). From the results, we find decompositions of J (and of any special fibre of the pencil) in terms of the minimal resolution of Λ. Using these decompositions and the topological type of any generic pair of curves of Λ, we obtain some topological information about J. More precise decompositions for J can be deduced from the minimal embedded resolution of any pair of fibres (not necessarily generic) or from the minimal embedded resolution of all the special fibres.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.