Abstract

An interferometer with a Fresnel zone plate located in the center of curvature of a concave mirror was studied. Attention was paid to the unique features of the interference field, which has a special point at which the path difference is equal to zero, thereby allowing for the observation of Newton-type fringes in white and quasi-monochromatic light. The conditions necessary for reducing the instrumental error to values less than lambda/20 were determined. Methods for suppressing noise and destructive interference patterns were also found. Metrological tests were carried out, and they proved the possibility of using this interferometer for industrial testing of spherical and parabolic mirrors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.