Abstract

We examine the $q=1$ and $t=0$ special cases of the parking functions conjecture. The parking functions conjecture states that the Hilbert series for the space of diagonal harmonics is equal to the bivariate generating function of $area$ and $dinv$ over the set of parking functions. Haglund recently proved that the Hilbert series for the space of diagonal harmonics is equal to a bivariate generating function over the set of Tesler matrices–upper-triangular matrices with every hook sum equal to one. We give a combinatorial interpretation of the Haglund generating function at $q=1$ and prove the corresponding case of the parking functions conjecture (first proven by Garsia and Haiman). We also discuss a possible proof of the $t = 0$ case consistent with this combinatorial interpretation. We conclude by briefly discussing possible refinements of the parking functions conjecture arising from this research and point of view. $\textbf{Note added in proof}$: We have since found such a proof of the $t = 0$ case and conjectured more detailed refinements. This research will most likely be presented in full in a forthcoming article. On examine les cas spéciaux $q=1$ et $t=0$ de la conjecture des fonctions de stationnement. Cette conjecture déclare que la série de Hilbert pour l'espace des harmoniques diagonaux est égale à la fonction génératrice bivariée (paramètres $area$ et $dinv$) sur l'ensemble des fonctions de stationnement. Haglund a prouvé récemment que la série de Hilbert pour l'espace des harmoniques diagonaux est égale à une fonction génératrice bivariée sur l'ensemble des matrices de Tesler triangulaires supérieures dont la somme de chaque équerre vaut un. On donne une interprétation combinatoire de la fonction génératrice de Haglund pour $q=1$ et on prouve le cas correspondant de la conjecture dans le cas des fonctions de stationnement (prouvé d'abord par Garsia et Haiman). On discute aussi d'une preuve possible du cas $t=0$, cohérente avec cette interprétation combinatoire. On conclut en discutant brièvement les raffinements possibles de la conjecture des fonctions de stationnement de ce point de vue. $\textbf{Note ajoutée sur épreuve}$: j'ai trouvé depuis cet article une preuve du cas $t=0$ et conjecturé des raffinements possibles. Ces résultats seront probablement présentés dans un article ultérieur.

Highlights

  • A parking function of length n is a sequence a1a2 · · · an such that, for all 1 ≤ i ≤ n,|f −1({1, 2, · · ·, i})| ≥ i.Let Pn be the set of parking functions of length n

  • The parking functions conjecture states that the Hilbert series for the space of diagonal harmonics is given by the following bivariate generating function over Pn

  • Q dinv (a1 a2 ···an ) tarea(a1 a2 ···an ), a1 a2 ···an ∈Pn where area and dinv are statistics defined on parking functions

Read more

Summary

Introduction

A parking function of length n is a sequence a1a2 · · · an such that, for all 1 ≤ i ≤ n,. BcP is a sequence of P distinct integers strictly less than R with P ≥ R This is impossible, and b1b2 · · · bn ∈ Sn. φ is a surjective map from Pn to Sn. Let π1π2 · · · πn be a parking function of length n. Given a permutation π ∈ Sn, let Dπ be the increasing forest on [n] constructed inductively as follows: Given a permutation π∗ = π1∗π2∗ · · · πn∗−1 and integer 1 ≤ m1 ≤ n, increase the label of every node of Dπ∗ by one. If an upper-triangular matrix has only the nonzero entries gπ(i) at (i, hπ(i)), the i-th hook sum is gπ(i) − j:hπ(j)=i gπ(j) This is equal to the number of descendents in Dπ of the node labelled i (including itself) minus the number of descendents of the nodes with i as a parent (including themselves) This must equal 1.

Decoding Tesler Matrices
Further Directions and Conjectures
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call