Abstract

Abstract Significant improvements in the fracture resistance, fracture toughness and thermal properties of silicon nitride ceramics are obtained by tailoring the microstructure. Combined use of seeding and tape casting techniques allowed the production of highly anisotropic microstructures. The seeded silicon nitrides exhibited a distinct bimodal microstructure, with large elongated β-Si3N4 grains, grown from seeds, dispersed within a fine-grained matrix. These large grains in the seeded silicon nitrides lie in the casting planes and self-align along the casting direction during tape forming process. It is here, when due to the high degree of alignment that “special boundaries” without the, otherwise, ubiquitous amorphous phase occurs. These “special” boundaries, hardly seen in three dimensionally random microstructures, are the object of the present study. Silicon nitride with high thermal conductivity of up to 120 W/mK (ref. 3) is produced by hot-pressing at 1800 °C for 2 h. powders with the following nominal composition: α-Si3N4 ;5 wt% Y203; 5 vol.% (β-Si3N4 seeds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.