Abstract
Echolocating bats locate a target by sonar. The performance of this system is related to the shape of the binaural conformation in bats. From numerical predictions, it was found that in a central frequency band, the orientation of a strong sidelobe is shifted nearly linearly in the vertical direction. Inspired by this, the authors built an accurate wide-scope elevation estimation system by constructing a pair of erect artificial pinnae and realized simultaneous elevation and azimuth estimation by constructing a pair of orthogonal pinnae. By demonstrating the simplicity of spatial target echolocation, the authors showed that only two independent single-output neural networks were needed for either elevation or azimuth estimation. This method could be applied to imitate any other mammal species with similar pinna directivity patterns to facilitate and improve an artificial echolocation system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.