Abstract

In order to address the commonly met issue of overfitting in speech recognition, this article investigates Multi-Task Learning, when the auxiliary task focuses on speaker classification. Overfitting occurs when the amount of training data is limited, leading to an over-sensible acoustic model. Multi-Task Learning is a method, among many other regularization methods, which decreases the overfitting impact by forcing the acoustic model to train jointly for multiple different, but related, tasks. In this paper, we consider speaker classification as an auxiliary task in order to improve the generalization abilities of the acoustic model, by training the model to recognize the speaker, or find the closest one inside the training set. We investigate this Multi-Task Learning setup on the TIMIT database, while the acoustic modeling is performed using a Recurrent Neural Network with Long Short-Term Memory cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.