Abstract

Stationary longitudinal vortical rolls emerge in katabatic and anabatic Prandtl slope flows at shallow slopes as a result of an instability when the imposed surface buoyancy flux relative to the background stratification is sufficiently large. Here, we identify the self-pairing of these longitudinal rolls as a unique flow structure. The topology of the counter-rotating vortex pair bears a striking resemblance to speaker-wires and their interaction with each other is a precursor to further destabilization and breakdown of the flow field into smaller structures. On its own, a speaker-wire vortex retains its unique topology without any vortex reconnection or breakup. For a fixed slope angle $\alpha =3^{\circ }$ and at a constant Prandtl number, we analyse the saturated state of speaker-wire vortices and perform a bi-global linear stability analysis based on their stationary state. We establish the existence of both fundamental and subharmonic secondary instabilities depending on the circulation and transverse wavelength of the base state of speaker-wire vortices. The dominance of subharmonic modes relative to the fundamental mode helps to explain the relative stability of a single vortex pair compared to the vortex dynamics in the presence of two or an even number of pairs. These instability modes are essential for the bending and merging of multiple speaker-wire vortices, which break up and lead to more dynamically unstable states, eventually paving the way for transition towards turbulence. This process is demonstrated via three-dimensional flow simulations with which we are able to track the nonlinear temporal evolution of these instabilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call