Abstract

Support Vector Machine (SVM) has been shown powerful in pattern recognition problems. SVM-based speaker verification has also been developed to use the concept of sequence kernel that is able to deal with variable-length patterns such as speech. In this paper, we propose a new kernel function, named the Log-Likelihood Ratio (LLR)-based composite sequence kernel. This kernel not only can be jointly optimized with the SVM training via the Multiple Kernel Learning (MKL) algorithm, but also can calculate the speech utterances in the kernel function intuitively by embedding an LLR in the sequence kernel. Our experimental results show that the proposed method outperforms the conventional speaker verification approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.