Abstract

An important application of speaker recognition is forensics. However, the accuracy of speaker recognition in forensic cases often drops off rapidly because of the ill effect of ambient noise, variable channel, different duration of speech data, and so on. Therefore, finding a robust speaker recognition model is very important for forensics. This paper builds a new speaker recognition model based on wavelet cepstral coefficient (WCC), i-vector, and cosine distance scoring (CDS). This model firstly uses the WCC to transform the speech into spectral feature vecors and then uses those spectral feature vectors to train the i-vectors that represent the speeches having different durations. CDS is used to compare the i-vectors to give out the evidence. Moreover, linear discriminant analysis (LDA) and the within-class covariance normalization (WCNN) are added to the CDS algorithm to deal with the channel variability problem. Finally, the likelihood ratio estimates the strength of the evidence. We use the TIMIT database to evaluate the performance of the proposed model. The experimental results show that the proposed model can effectively solve the troubles of forensic scenario, but the time cost of the method is high.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.