Abstract
This paper introduces bootstrap error estimation for automatic tuning of parameters in combined networks, applied as front-end preprocessors for a speech recognition system based on hidden Markov models. The method is evaluated on a large-vocabulary (10 000 words) continuous speech recognition task. Bootstrap estimates of minimum mean squared error allow selection of speaker normalization models improving recognition performance. The procedure allows a flexible strategy for dealing with inter-speaker variability without requiring an additional validation set. Recognition results are compared for linear, generalized radial basis functions and multi-layer perceptron network architectures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.