Abstract

In large population speaker identification (SI) systems, likelihood computations between an unknown speaker's feature vectors and the registered speaker models can be very time-consuming and impose a bottleneck. For applications requiring fast SI, this is a recognized problem and improvements in efficiency would be beneficial. In this paper, we propose a method whereby GMM-based speaker models are clustered using a simple k-means algorithm. Then, during the test stage, only a small proportion of speaker models in selected clusters are used in the likelihood computations resulting in a significant speed-up with little to no loss in accuracy. In general, as the number of selected clusters is reduced, the identification accuracy decreases; however, this loss can be controlled through proper tradeoff. The proposed method may also be combined with other test stage speed-up techniques resulting in even greater speed-up gains without additional sacrifices in accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.