Abstract
Hidden Markov modeling is extended to speaker-independent phone recognition. Using multiple codebooks of various linear-predictive-coding (LPC) parameters and discrete hidden Markov models (HMMs) the authors obtain a speaker-independent phone recognition accuracy of 58.8-73.8% on the TIMIT database, depending on the type of acoustic and language models used. In comparison, the performance of expert spectrogram readers is only 69% without use of higher level knowledge. The authors introduce the co-occurrence smoothing algorithm, which enables accurate recognition even with very limited training data. Since the results were evaluated on a standard database, they can be used as benchmarks to evaluate future systems.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Acoustics, Speech, and Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.