Abstract

Previously, we proposed a speaker recognition system using a combination of MFCC-based vocal tract feature and phase information which includes rich vocal source information. In this paper, we investigate the efficiency of combination of various vocal tract features (MFCC and LPCC) and vocal source features (phase and LPC residual) for normal-duration and short-duration utterance. The Japanese Newspaper Article Sentence (JNAS) database was used to evaluate our proposed method. The combination of various vocal tract and vocal source features achieved remarkable improvement than the conventional MFCC-based vocal tract feature for both normal-duration and short-duration utterances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.