Abstract

In this paper, a frame linear predictive coding spectrum (FLPCS) technique for speaker identification is presented. Traditionally, linear predictive coding (LPC) was applied in many speech recognition applications, nevertheless, the modification of LPC termed FLPCS is proposed in this study for speaker identification. The analysis procedure consists of feature extraction and voice classification. In the stage of feature extraction, the representative characteristics were extracted using the FLPCS technique. Through the approach, the size of the feature vector of a speaker can be reduced within an acceptable recognition rate. In the stage of classification, general regression neural network (GRNN) and Gaussian mixture model (GMM) were applied because of their rapid response and simplicity in implementation. In the experimental investigation, performances of different order FLPCS coefficients which were induced from the LPC spectrum were compared with one another. Further, the capability analysis on GRNN and GMM was also described. The experimental results showed GMM can achieve a better recognition rate with feature extraction using the FLPCS method. It is also suggested the GMM can complete training and identification in a very short time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.