Abstract
This article describes a new Speaker Discrimination System (SDS), which is a part of an overall project called Audio Documents Indexing based on a Speaker Discrimination System (ADISDS). Speaker discrimination consists in checking whether two speech segments come from the same speaker or not. This research domain presents an important field in biometry, since the voice remains an important feature used at distance (via telephone). However, although some discriminative classifiers do exist nowadays, their performances are not enough sufficient for short speech segments. This issue led us to propose an efficient fusion between such classifiers in order to enhance the discriminative performance. This fusion is obtained, by using three different techniques: a serial fusion, parallel fusion and serial-parallel fusion. Also, two classifiers have been chosen for the evaluation: a mono-gaussian statistical classifier and a Multi Layer Perceptron (MLP). Several experiments of speaker discrimination are conducted on different databases: Hub4 Broadcast-News and telephonic calls. Results show that the fusion has efficiently improved the scores obtained by each approach alone. So, for instance, we got an Equal Error Rate (EER) of about 7% on a subset of Hub4 Broadcast-News database, with short segments of 4 seconds, and an EER of about 4% on telephonic speech, with medium segments of 10 seconds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Mobile Computing and Multimedia Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.