Abstract
In this paper, we propose a research work on speaker discrimination using a multi-classifier fusion with focus on feature reduction effects. Speaker discrimination consists in the automatic distinction between two speakers using the vocal characteristics of their speeches. A number of features are extracted using Mel Frequency Spectral Coefficients and then reduced using Relative Speaker Characteristic (RSC) along with the Principal Components Analysis (PCA). Several classification methods are implemented to ensure the discrimination task. Since different classifiers are employed, two fusion algorithms at the decision level, referred to as Weighted Fusion and Fuzzy Fusion, are proposed to boost the classification performances. These algorithms are based on the weighting of the different classifiers outputs. Furthermore, the effects of speaker gender and feature reduction on the speaker discrimination task have been examined too. The evaluation of our approaches was conducted on a subset of Hub-4 Broadcast-News. The experimental results have shown that the speaker discrimination accuracy is improved by 5–15% using the (RSC–PCA) feature reduction. In addition, the proposed fusion methods recorded an improvement of about 10% compared to the individual scores of the classifiers. Finally, we noticed that the gender has an important impact on the discrimination performances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.