Abstract

In this paper, a speaker adaptation method to adapt an existing speaking rate-dependent hierarchical prosodic model (SR-HPM) of an SR-controlled Mandarin TTS system to new speaker's data for realizing a new voice is proposed. Two main problems are addressed: data sparseness for few adaptation utterances existing only in a small range of normal speaking rate and no adaptation data in both ranges of fast and slow speaking rates. The proposed method follows the idea of SR-HPM training to firstly normalize the prosodic-acoustic features of the new speaker's speech data, to then train an HPM by the prosody labeling and modeling algorithm, and to lastly refine the HPM to an SR-dependent model. The MAP adaptation method with model parameter extrapolation is applied to cope with the above two problems. Experimental results on a male speaker's adaptation data confirmed that the resulting adaptive SR-HPM has reasonable parameters covering a wide range of speaking rates and hence can be used in the TTS system to generate prosodic-acoustic features for synthesizing the new speaker's voice of any given SR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.