Abstract

Fertilization is a fundamental process in sexual reproduction during which gametes fuse to combine their genetic material and start the next generation in their life cycle. Fertilization involves species-specific recognition, adhesion, and fusion between the gametes.1,2 In mammals and other model species, some proteins are known to be required for gamete interactions and have been validated with loss-of-function fertility phenotypes.3,4 Yet, the molecular basis of sperm-egg interaction is not well understood. In a forward genetic screen for fertility mutants in Caenorhabditis elegans, we identified spe-51. Mutant worms make sperm that are unable to fertilize the oocyte but otherwise normal by all available measurements. The spe-51 gene encodes a secreted protein that includes an immunoglobulin (Ig)-like domain and a hydrophobic sequence of amino acids. The SPE-51 protein acts cell autonomously and localizes to the surface of the spermatozoa. We further show that the gene product of the mammalian sperm function gene Sof1 is likewise secreted. This is the first example of a secreted protein required for the interactions between the sperm and egg with genetic validation for a specific function in fertilization in C.elegans (also see spe-365). This is also the first experimental evidence that mammalian SOF1 is secreted. Our analyses of these genes begin to build a paradigm for sperm-secreted or reproductive-tract-secreted proteins that coat the sperm surface and influence their survival, motility, and/or the ability to fertilize the egg.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call