Abstract

Abstract Because ‘primary’ sexual characteristics (i.e. those directly associated with reproduction) can be extremely variable, evolve quickly, and can be impacted by both natural and sexual selection, they are often considered excellent model systems in which to study evolution. Here, we explore the evolution of the anal sheath, a trait hypothesized to facilitate the release and proper placement of eggs on the spawning substrate, and its relationship to spawning habitat and maximum body size in a family of fish (Fundulidae). In addition to using phylogenetically informed statistics to determine the role of preferred spawning habitat and maximum body size on the evolution of anal sheath length, we reconstruct the evolutionary history of the anal sheath and preferred spawning habitat. We then test for significant phylogenetic signal and evolutionary rate shifts in the size of the anal sheath and the preferred spawning habitat. Our results indicate that preferred spawning habitat, and not maximum body length, significantly influences anal sheath size, which is associated with a significant phylogenetic signal, and an evolutionary rate similar to that of preferred spawning substrate. We discuss these results in terms of potential evolutionary mechanisms driving anal sheath length.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call