Abstract

BackgroundAcute lung injury (ALI) is an inflammatory condition characterized by acute damage to lung tissue. SPAUTIN-1, recognized as a small molecule drug targeting autophagy and USP10/13, has been reported for its potential to inhibit oxidative stress damage in various tissue injuries. However, the role and mechanism of SPAUTIN-1 in ALI remain unclear. This study aims to elucidate the protective effects of SPAUTIN-1 on ALI, with a particular focus on its role and mechanism in pulmonary inflammatory responses. MethodsLipopolysaccharides (LPS) were employed to induce inflammation-mediated ALI. Bleomycin was used to induce non-inflammation-mediated ALI. The mechanism of SPAUTIN-1 action was identified through RNA-Sequencing and subsequently validated in mouse primary cells. Tert-butyl hydroperoxide (TBHP) was utilized to create an in vitro model of lung epithelial cell oxidative stress with MLE-12 cells. ResultsSPAUTIN-1 significantly mitigated LPS-induced lung injury and inflammatory responses, attenuated necroptosis and apoptosis in lung epithelial cells, and inhibited autophagy in leukocytes and epithelial cells. However, SPAUTIN-1 exhibited no significant effect on bleomycin-induced lung injury. RNA-sequencing results demonstrated that SPAUTIN-1 significantly inhibited the NF-κB signaling pathway in leukocytes, a finding consistently confirmed by mouse primary cell assays. In vitro experiments further revealed that SPAUTIN-1 effectively mitigated oxidative stress injury in MLE-12 cells induced by TBHP. ConclusionSPAUTIN-1 alleviated LPS-induced inflammatory injury by inhibiting the NF-κB pathway in leukocytes and protected epithelial cells from oxidative damage, positioning it as a potential therapeutic candidate for ALI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call