Abstract

This paper analyzes the drop transfer process in gas metal arc welding in short-circuit transfer mode (GMAW-S) in order to develop an optimized spatter rate model that can be used on line. According to thermodynamic characters and practical behavior, a complete arcing process is divided into three sub-processes: arc re-ignition, energy output and shorting preparation. Shorting process is then divided as drop spread, bridge sustention and bridge destabilization. Nine process variables and their distribution are analyzed based on welding experiments with high-speed photos and synchronous current and voltage signals. Method of variation coefficient is used to reflect process consistency and to design characteristic parameters. Partial least square regression (PLSR) is utilized to set up spatter rate model because of severe correlativity among the above characteristic parameters. PLSR is a new multivariate statistical analysis method, in which regression modeling, data simplification and relativity analysis are included in a single algorithm. Experiment results show that the regression equation based on PLSR is effective for on-line predicting spatter rate of its corresponding welding condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.