Abstract
Due to the limitations of hardware technology, satellite sensors cannot obtain images with high temporal, spatial, and spectral resolutions at the same time. Current spatiotemporal fusion methods try to solve the contradiction between temporal resolution and spatial resolution, which cannot achieve good reconstruction accuracy partly because the data sources are from heterogeneous platforms with long chains difficult to be modeled. Different from the crossing-platform fusion, this work proposes to improve the spatial and temporal resolutions on a single platform. For the 2-m panchromatic images, 8-m multispectral images, and 16-m wide-field-view images captured by the Gaofen-1 satellite, our goal is to produce 2-m multispectral images with high temporal resolutions. Two convolutional neural networks are built to solve this spatiotemporal-spectral fusion issue with pansharpening and spatiotemporal fusion in serial. In the validation stage, the 2-m multispectral images are built and evaluated with the panchromatic images and 8-m multispectral images. The digital and visual evaluations show that our method can produce visually acceptable fusion quality, which may enhance the feasibility of the Gaofen-1 data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.