Abstract

As a link connecting the environmental perception system and the decision-making system, accurate obstacle trajectory prediction provides a reliable guarantee of correct decision-making by autonomous vehicles. Oriented toward a mixed human-driven and machine-driven traffic environment, a vehicle trajectory prediction algorithm based on an encoding–decoding framework composed of a multiple-attention mechanism is proposed. Firstly, a directed graph is used to describe vehicle–vehicle motion dependencies. Then, by calculating the repulsive force between vehicles using a priori edge information based on the artificial potential field theory, vehicle–vehicle interaction coefficients are extracted via a graph attention mechanism (GAT). Subsequently, after concatenating the vehicle–vehicle interaction feature with the encoded vehicle trajectory vectors, a spatio-temporal attention mechanism is applied to determine the coupling relationship of hidden vectors. Finally, the predicted trajectory is generated by a gated recurrent unit (GRU) decoder. The training and evaluation of the proposed model were conducted on the NGSIM public dataset. The test results demonstrated that compared with existing baseline models, our approach has fewer prediction errors and better robustness. In addition, introducing artificial potential fields into the attention mechanism causes the model to have better interpretability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call