Abstract

Improving carbon emission efficiency (CEE) has emerged as a critical way for Regional Comprehensive Economic Partnership (RCEP) members to promote carbon reduction in the context of climate change mitigation and carbon neutrality. The super-efficiency slacks-based measure (SBM) model, which considers non-desired outputs, is adopted to comprehensively assess the current state and trend of CEE in 15 RCEP countries from a spatio-temporal dynamic perspective, and the global Malmquist-Luenberger (GML) index is coupled to quantify the spatial and temporal differences and dynamic changes. Following that, taking into account the spatial characteristics of CEE, the extended STIRPAT model and the spatial Durbin model are combined to further investigate the primary influencing factors of CEE. It is found that (1) the CEE of RCEP members is generally poor and unevenly distributed in temporal and spatial dimensions, with significant room for improvement and an overall positive spatial autocorrelation; (2) CEE varies considerably among RCEP members, with developed countries far outstripping developing countries in terms of both the current status and trend of CEE; (3) on a dynamic level, the GML index exhibits W-shaped fluctuations, with technological progress acting as the dominant force; and (4) in terms of spillover effects, affluence and economic agglomeration inhibit CEE enhancement, whereas technology level and investment capacity facilitate it. The findings will be useful in developing carbon-neutral plans for various countries as well as coordinated sustainable development for RCEP regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call