Abstract

Based on the meteorological data of 143 meteorological site, we calculated aridity index (AI) with the potential evaporation formulated by FAO-56 Penman-Monteith and precipitation in Northwest China during 1989-2019. Mann-Kendall trend analysis, wavelet analysis and partial differential equation were used to examine the AI change trend, variation cycle, and contribution rate of main climate impact factors to AI. The results showed that there was a non-significant decreasing trend of AI in Northwest China on the whole, a significant decreasing trend of AI in Qinghai, and a non-significant increasing trend of AI in Xinjiang during 1989-2019. There was an abrupt change of AI in the study area in 2010. There was a primary 17-year periodicity in the change of AI in Northwest China. The spatial distribution of AI was shown as a larger AI in the middle of Northwest China and a smaller AI in the Southeast and Northwest in Northwest China. The tendency rates of AI were -1.27, -1.17·(10 a)-1, -0.41, -0.49, -1.77 and -2.73·(10 a)-1 in Northwest China, Gansu, Ningxia, Shanxi, Qinghai, and Xinjiang, respectively. The possibility of drought risk was higher in Xiaozaohuo, Korla, Aksu, and Turpan region. Precipitation and actual water vapor pressure were the dominant factors of AI changes in Gansu, Ningxia, Qinghai, and Shaanxi. But the potential evapotranspiration, solar radiation, and average temperature were the main climate factors for AI changes in Xinjiang.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call