Abstract
The anthropogenic radionuclides such as caesium-137 (137Cs), strontium-90 (90Sr), 3H, 14C, and plutonium (Pu) were released into the global ocean as results with large scale weapon tests in the late 1950s and early 1960s. Because these anthropogenic radionuclides have been still existed in the ocean, it is necessary to investigate the behavior of these anthropogenic radionuclides due to investigate the effects of human health. In this study, the spatiotemporal variations in the 137Cs and 90Sr activity concentrations in global ocean surface seawater from 1956 to 2021 using the HAMGlobal2021: Historical Artificial radioactivity database in Marine environment, Global integrated version 2021. The global ocean was divided into 37 boxes. The 0.5-yr average value of 90Sr in the northern North Atlantic Ocean and its marginal sea, decreased exponentially in 1970–2010, just before the F1NPS accident. Estimated apparent half residence time of 137Cs and 90Sr ranged from 4.1-34.1 years and 3.6-25.2 years, respectively. Considering that longer Tap occurs larger inflow and shorter Tap occurs larger outflows/smaller inflow of radionuclide from the upstream region, 137Cs and 90Sr were inflowed into the Eastern China Sea from the subtropical western North Pacific Ocean. Inflow of 90Sr into the Sea of Japan from the Eastern China Sea were relatively smaller than those of 137Cs. Although 90Sr were decreased exponentially, these trends tended to be larger than those of 137Cs, which was investigated by our previous study (Inomata and Aoyama, 2023). This might be caused by the different behavior of 90Sr and 137Cs such as particulate form for 90Sr in the seawater.   Keywords: 90Sr, 137Cs, Database, surface seawater, global ocean Reference: Inomata and Aoyama, Evaluating the transport of surface seawater from 1956 to 2021 using 137Cs deposited in the global ocean as a chemical tracer. Earth Syst. Sci. Data, 15, 1969–2007, 2023.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.