Abstract

Dominant plant species may coexist and maintain high productivity in alpine wetland through available nitrogen (N) niche differentiation over time and space. We tested the hypotheses that dominant plant species differ in uptake of inorganic and organic N and that such differences depend on soil depth and season. We conducted a short-term 15N-labeling experiment in an alpine wetland on the Tibetan Plateau. The experiment used a factorial design with three N forms (nitrate, ammonium and glycine), three soil depths (0–5, 5–10 and 10–15 cm), two seasons (May and July) and three dominant species (Carex muliensis, C. lasiocarpa and Potentilla anserina). All three species took up organic N (glycine), but showed different patterns over seasons and depths. 15N uptake rate was higher in May than in July in C. muliensis and C. lasiocarpa, but lower in May than in July in P. anserina. C. muliensis took up more 15NH4 + and 15NO3 − than glycine-15N at all soil depths. C. lasiocarpa took up more glycine-15N than 15NH4 + or 15NO3 at 5–10 cm depth. P. anserina showed little difference in uptake at any soil depths. Dominant species in alpine wetland are able to take up both organic and inorganic N, but show different patterns depending on N form, soil depth, season and their interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.