Abstract

Topographic factors affect nitrogen cycling in forest soils, including nitrous oxide (N2O) emissions, which contribute to the greenhouse effect. We measured the N2O flux at 14 chambers placed along a 65-m transect on a slope for 1 year at 2- to 3-week intervals. We applied a hierarchical Bayesian model with a conditional autoregressive (CAR) model to assess the spatiotemporal N2O flux along a slope and quantify the effects of environmental factors on N2O emissions. N2O fluxes at chambers located at lower positions along the slope were relatively greater than those at higher positions. During the non-soil-freezing period, N2O fluxes fluctuated seasonally depending on soil temperature. The soil temperature dependency of N2O fluxes at each chamber increased with descending slope position (the median of the Q10 equivalent simulated from posterior distribution ranged from 1.18 to 3.64). According to the Bayesian hierarchical model, this trend could be partially explained by the C/N ratio at each chamber position. During the soil-freezing period, relatively high N2O fluxes were observed at lower positions along the slope.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.