Abstract

We evaluated the spatial and temporal patterns of forest fires in two fire seasons (March to June and September to November) from 1996 to 2010 in Jilin Province, China, using the Canadian Forest Fire Weather Index System. Fire data were obtained from the Provincial Fire Agency, and historical climate records of daily weather observations were collected from 36 weather stations in Jilin and its neighboring provinces. A linear regression model was used to analyze linear trends between climate and fire weather indices with time treated as an independent variable. Correlation analysis was used to detect correlations between fire frequency, areas burned, and fire weather indices. A thin-plate smooth spline model was used to interpolate the point data of 36 weather stations to generate a surface covering the whole province. Our analyses indicated fire frequency and areas burned were significantly correlated with fire weather indices. Overall, the Canadian Forest Fire Weather Index System appeared to be work well for determining the fire danger rating in Jilin Province. Also, our analyses indicated that in the forthcoming decades, the overall fire danger in March and April should decrease across the province, but the chance of a large fire in these months would increase. The fire danger in the fall fire season would increase in the future, and the chance of large fire would also increase. Historically, because most fires have occurred in the spring in Jilin Province, such a shift in the future fire danger between the two fire seasons would be beneficial for the province’s fire management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call