Abstract

Excessive accumulation of soil heavy metals (HMs) result in the deterioration of soil quality and reduction of agricultural productivity and safety. The accumulation status, temporal change, and sources of soil HMs were determined by large-scale field surveys in 2014 and 2019 in rapid urbanization and industrialization area along the lower reaches of the Yangtze River, China. Eighty-two surface soil samples were collected in 2014 and ninety-five surface soil samples and seven soil profiles (0–100 cm) were collected in 2019. The mean concentrations (in, mg kg−1) of As (10.17), Cd (0.33), Cr (86.38), Cu (38.22), Hg (0.11), Ni (37.67), Pb (43.95), and Zn (113.15) were greater than the corresponding background values. The concentrations of these 8 HMs significantly varied with site-specific distributions depending on nearby landscape patterns with decreasing order: agricultural soil around industrial > agricultural soil > fallow soil. Cd and Hg were found to be priority pollutants due to their greater accumulations in this study area. Combined analyses of principal component analysis and positive matrix factorization model addressed source apportionment of soil HMs. Industrial activities, parent materials, and agricultural and traffic activities were three major sources and their contributions were 35.56%, 35.20%, and 29.23%, respectively. The concentrations of soil As, Cd, Cr and Pb increased with time. This study elucidates how changes in land uses and time affect soil HMs and provides reasonable suggestions for the effective reduction of HM contamination in economically and industrially developed areas of China, and elsewhere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.