Abstract
AbstractIn the Great Lakes basin of North America, annual run‐off is dominated by snowmelt. This snowmelt‐induced run‐off plays an important role within the hydrologic cycle of the basin, influencing soil moisture availability and driving the seasonal cycle of spring and summer lake levels. Despite this, relatively little is understood about the patterns and trends of snow ablation event frequency and magnitude within the Great Lakes basin. This study uses a gridded dataset of Canadian and United States surface snow depth observations to develop a regional climatology of snow ablation events from 1960 to 2009. An ablation event is defined as an interdiurnal snow depth decrease within an individual grid cell. A clear seasonal cycle in ablation event frequency exists within the basin and peak ablation event probability is latitudinally dependent. Most of the basin experiences peak ablation frequency in March, while the northern and southern regions of the basin experience respective peaks in April and February. An investigation into the interannual frequency of ablation events reveals ablation events significantly decrease within the northeastern and northwestern Lake Superior drainage basins and significantly increase within the eastern Lake Huron and Georgian Bay drainage basins. In the eastern Lake Huron and Georgian Bay drainage basins, larger ablation events are occurring more frequently, and a larger impact to the hydrology can be expected. Trends in ablation events are attributed primarily to changes in snowfall and snow depth across the region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.