Abstract
The distribution and variability of surface soil moisture at regional scales is still poorly understood in the Loess Plateau of China. Spatial and temporal dynamics of surface soil moisture is important due to its impact on vegetation growth and its potential feedback to atmospheric and hydrologic processes. In this study, we analyzed surface soil moisture dynamics and the impacts of precipitation and evapotranspiration on surface soil moisture using remote sensing data during the growing season in 2011 for the Loess Plateau, which contain surface soil moisture, precipitation, vegetation index and evapotranspiration. Results indicate that the areas with low surface soil moisture are mainly located in the semi-arid region. Under dry surface soil moisture, evapotranspiration temporal persistence has a higher positive correlation (0.537) with surface soil moisture temporal persistence, and evapotranspiration is very sensitive to surface soil moisture. But under wet surface soil moisture regime, surface soil moisture temporal persistence has a higher negative correlation (-0.621) with evapotranspiration temporal persistence. Correlation of surface soil moisture and monthly precipitation, evapotranspiration and vegetation index illustrated that precipitation was a significant factor influencing surface soil moisture spatial variance. The correlation coefficients between monthly surface soil moisture and precipitation was varied in different climatic regions, which was 0.304 in arid, 0.364 in semi-arid, 0.490 in transitional and 0.300 in semi-humid regions. Surface soil moisture is more sensitive to precipitation, evapotranspiration, in transitional regions between dry and wet climates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.