Abstract

The role of geospatial disparities in the dynamics of the COVID-19 pandemic is poorly understood. We developed a spatially-explicit mathematical model to simulate transmission dynamics of COVID-19 disease infection in relation with the uneven distribution of the healthcare capacity in Ohio, U.S. The results showed substantial spatial variation in the spread of the disease, with localized areas showing marked differences in disease attack rates. Higher COVID-19 attack rates experienced in some highly connected and urbanized areas (274 cases per 100,000 people) could substantially impact the critical health care response of these areas regardless of their potentially high healthcare capacity compared to more rural and less connected counterparts (85 cases per 100,000). Accounting for the spatially uneven disease diffusion linked to the geographical distribution of the critical care resources is essential in designing effective prevention and control programmes aimed at reducing the impact of COVID-19 pandemic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.