Abstract

Non invasive brain-computer interfaces (BCI) allow people to communicate by modulating features of their electroencephalogram (EEG). Spatiotemporal filtering has a vital role in multi-class, EEG based BCI. In this study, we used a novel combination of principle component analysis, independent component analysis and dipole source localization to design a spatiotemporal multiple source tuning (SPAMSORT) filter bank, each channel of which was tuned to the activity of an underlying dipole source. Changes in the event-related spectral perturbation (ERSP) were measured and used to train a linear support vector machine to classify between four classes of motor imagery tasks (left hand, right hand, foot and tongue) for one subject. ERSP values were significantly (p<0.01) different across tasks and better (p<0.01) than conventional spatial filtering methods (large Laplacian and common average reference). Classification resulted in an average accuracy of 82.5%. This approach could lead to promising BCI applications such as control of a prosthesis with multiple degrees of freedom.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.