Abstract

In this paper, a novel method is proposed for spatio-temporal segmentation of moving objects using edge features in infrared videos. We define motion saliency of edge (MSoE) to generate the MSoE-map. The seeds of moving objects are extracted from the MSoE-map by using Otsu's method and subsequently compensated by historical data. An improved layer-based region growing method is applied to the seeds to achieve spatial segmentation of moving objects. The region growing method has an adjustable growing threshold. So, one of the focuses of our work is how to determine the best growing threshold. A Markov Random Field (MRF) based criterion with maximum a posterior (MAP) estimation principle is proposed for performance evaluation of moving object segmentation without ground truth (GT) in infrared videos. This criterion can be considered as an object function of threshold determination during global searching. The global optimum is accomplished by using simulated annealing (SA) algorithm to obtain the best growing threshold. The final segmentation mask of moving objects is grown from the seeds with the best growing threshold. Experimental results are provided to illustrate that the proposed method has better performance for moving object segmentation with fewer effects of object-background misclassification in infrared videos.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.