Abstract

Abstract. Adaptation to future climate change with limited water resources is a major global challenge to sustainable and sufficient crop production. However, the large-scale responses of the crop water footprint and its associated benchmarks under various irrigation regimes to future climate change scenarios remain unclear. The present study quantified the responses of the maize and wheat water footprint (WF) per unit yield (m3 t−1) as well as the corresponding WF benchmarks under two Representative Concentration Pathway (RCP) scenarios, RCP2.6 and RCP8.5, in the 2030s, 2050s, and 2080s at a 5 arcmin grid level in China. The AquaCrop model with the outputs of six global climate models from Phase 5 of the Coupled Model Intercomparison Project (CMIP5) as its input data was used to simulate the WFs of maize and wheat. The differences among rain-fed wheat and maize and furrow-, micro-, and sprinkler-irrigated wheat and maize were identified. Compared with the baseline year (2013), the maize WF will increase under both RCP2.6 and RCP8.5 (by 17 % and 13 %, respectively) until the 2080s. The wheat WF will increase under RCP2.6 (by 12 % until the 2080s) and decrease (by 12 %) under RCP8.5 until the 2080s, with a higher increase in the wheat yield and a decrease in the wheat WF due to the higher CO2 concentration in 2080s under RCP8.5. The WF will increase the most for rain-fed crops. Relative to rain-fed crops, micro-irrigation and sprinkler irrigation result in the smallest increases in the WF for maize and wheat, respectively. These water-saving management techniques will mitigate the negative impact of climate change more effectively. The WF benchmarks for maize and wheat in the humid zone (an approximate overall average of 680 m3 t−1 for maize and 873 m3 t−1 for wheat at the 20th percentile) are 13 %–32 % higher than those in the arid zone (which experiences an overall average of 601 m3 t−1 for maize and 753 m3 t−1 for wheat). The differences in the WF benchmarks among various irrigation regimes are more significant in the arid zone, where they can be as high as 57 % for the 20th percentile: WF benchmarks of 1020 m3 t−1 for sprinkler-irrigated wheat and 648 m3 t−1 for micro-irrigated wheat. Nevertheless, the WF benchmarks will not respond to climate changes as dramatically as the WF in the same area, especially in areas with limited agricultural development. The present study demonstrated that the observed different responses to climate change in terms of crop water consumption, water use efficiency, and WF benchmarks under different irrigation regimes cannot be ignored. It also lays the foundation for future investigations into the influences of irrigation methods, RCPs, and crop types on the WF and its benchmarks in response to climate change in all agricultural regions worldwide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call