Abstract
4D reconstruction based on radiation-free ultrasound can provide valuable information about the anatomy. Current 4D US technologies are either faced with limited field-of-view (FoV), technical complications, or cumbersome setups. This paper proposes a spatiotemporal US reconstruction framework to enhance its ability to provide dynamic structure information. We propose a spatiotemporal US reconstruction framework based on freehand sonography. First, a collecting strategy is presented to acquire 2D US images in multiple spatial and temporal positions. A morphology-based phase extraction method after pose correction is presented to decouple the compounding image variations. For temporal alignment and reconstruction, a robust kernel regression model is established to reconstruct images in arbitrary phases. Finally, the spatiotemporal reconstruction is demonstrated in the form of 4D movies by integrating the US images according to the tracked poses and estimated phases. Quantitative and qualitative experiments were conducted on the carotid US to validate the feasibility of the proposed pipeline. The mean phase localization and heart rate estimation errors were 0.07 ± 0.04s and 0.83 ± 3.35bpm, respectively, compared with cardiac gating signals. The assessment of reconstruction quality showed a low RMSE (<0.06) between consecutive images. Quantitative comparisons of anatomy reconstruction from the generated US volumes and MRI showed an average surface distance of 0.39 ± 0.09mm on the common carotid artery and 0.53 ± 0.05mm with a landmark localization error of 0.60 ± 0.18mm on carotid bifurcation. A novel spatiotemporal US reconstruction framework based on freehand sonography is proposed that preserves the utility nature of conventional freehand US. Evaluations on in vivo datasets indicated that our framework could achieve acceptable reconstruction performance and show potential application value in the US examination of dynamic anatomy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of computer assisted radiology and surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.