Abstract

The ability to monitor and predict sea temperature is crucial for determining the likelihood that ocean-related events will occur. However, most studies have focused on predicting sea surface temperature, and less attention has been paid to predicting sea subsurface temperature (SSbT), which can reflect the thermal state of the entire ocean. In this study, we use a 3D U-Net model to predict the SSbT in the upper 400 m of the Pacific Ocean and its adjacent oceans for lead times of 12 months. Two reconstructed SSbT products are added to the training set to solve the problem of insufficient observation data. Experimental results indicate that this method can predict the ocean temperature more accurately than previous methods in most depth layers. The root mean square error and mean absolute error of the predicted SSbT fields for all lead times are within 0.5–0.7 °C and 0.3–0.45 °C, respectively, while the average correlation coefficient scores of the predicted SSbT profiles are above 0.96 for almost all lead times. In addition, a case study qualitatively demonstrates that the 3D U-Net model can predict realistic SSbT variations in the study area and, thus, facilitate understanding of future changes in the thermal state of the subsurface ocean.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.