Abstract

Recent experimental observations revealed the inherent nature of strong intermittent and heterogeneous plastic deformation at the nano- to micrometer scale. We present here a review of quantitative measures of temporal and spatial material instabilities associated with small-scale plastic flow. Spatial correlation characterization methods are developed and used to obtain information on the width of shear bands resulting from spatial instabilities. The effects of atomic-scale barriers to dislocation motion and the influence of sample size on temporal and spatial plastic instabilities are discussed. A simplified branching model of dislocation source activation is extended to predict dislocation barrier effects on strain burst statistics, and the transition from power law scaling to an exponential-like distribution. The connection between temporal and spatial plastic instabilities is discussed, and the efforts of considering these effects in crystal plasticity theory are also highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.