Abstract
We formulate and analyze a general reaction-diffusion equation with delay, inspired by age-structured spruce budworm population dynamics with spatial diffusion by matured individuals. The model has its particular feature for bistability due to the incorporation of a nonlinear birth function (Ricker's function) and a Holling type function of predation by birds. Here we establish some results about the global dynamics, in particular, the stability of and global Hopf bifurcation from the spatially homogeneous steady state when the maturation delay is taken as a bifurcation parameter. We also use a degree theoretical argument to identify intervals for the diffusion rate when the model system has a spatially heterogeneous steady state. Numerical experiments presented show interesting spatialtemporal patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.