Abstract

The dynamics of a diffusive predator–prey system with Holling type-III functional response subject to Neumann boundary conditions is investigated. The parameter region for the stability and instability of the unique constant steady state solution is derived, and the existence of time-periodic orbits and non-constant steady state solutions are proved by bifurcation method and Leray–Schauder degree theory. The effect of various parameters on the existence and nonexistence of spatiotemporal patterns is analyzed. These results show that the impact of Holling type-III response essentially increases the system spatiotemporal complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.