Abstract

Various cities in China have been identified as “stove cities” either in contemporary or historical times, exposing residents to extremely high temperatures. Existing studies on the heat island effect in stove cities are not representative nationwide. The outdated nature of these studies also significantly diminishes the relevance of their findings. Thus, reassessing the urban heat island (UHI) effect of stove cities is necessary in the context of global climate change and urbanization. This study focuses on seven symbolic and geographically distributed stove cities in China, including Nanjing, Chongqing, Wuhan, Fuzhou, Beijing, Xi’an, and Turpan. Using land surface temperature (LST) data, this study investigates the summer heat island effect from 2013 to 2023 and analyzes changes in the spatial distribution of the heat island effect. This paper utilizes impervious surface data and urban clustering algorithms to define urban and suburban areas. It then examines the evolution and spatial distribution of surface urban heat island intensity (SUHII) over time. Incorporating urbanization variables like population density and urban area, the study analyzes the main factors affecting the heat island effect from 2013 to 2018. We find that all cities continuously expand, with the annual average heat island effect intensifying over the years. With the exception of Beijing, the summer heat island or cool island effects in the remaining six cities show an overall intensification trend. From 2013 to 2018, SUHII has been primarily related to urban expansion and planning layout, with minimal impact from factors such as population density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call