Abstract

An experimental investigation of chemical reaction fronts, created by an initial separation of reactants, is reported for a system of two competing reactions. Spatiotemporal patterns are observed experimentally for the competing reaction front and are accounted for quantitatively by a reaction-diffusion model. We use the reaction of xylenol orange with Cr3+ in aqueous solution. Different oligomers of Cr3+ provide the two kinetically different species that react competitively with xylenol orange. The parameters that determine whether pattern formation is observable at the front are the ratios of (1) the microscopic reaction constants of the competing reactions and (2) the concentrations of the competing species. Under the parameter values studied, which allowed clear spatiotemporal separation of the two competing reactions, we find that the behavior of the reaction front at early times follows a perturbation theory developed for a simple elementary A + B → C reaction with initially separated reactants. The...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.