Abstract

Dietary exposure is a major cause of pesticide bioaccumulation in herbivores. However, various types of natural conditions affect the structure of the complicated herbivores' diets, making it difficult to assess their exposure to pesticides. In this study, to evaluate the role of pesticides in the terrestrial food web, a dynamic hybrid dietary model was developed for North American white-tailed deer (or whitetails), which integrates different plant types and the digestibility of deer's foods. Moreover, an equivalent season approach was introduced to generalize the pesticide intake rate geographically. The results indicate that the soil-to-whitetail (meat) bioaccumulation factor (BAF) values in summer are significantly higher than those of other seasonal periods, owing to the high food availability and digestibility. Pesticides with low octanol/water partition coefficients have a high computed soil-to-plant BAF, but a low plant-to-whitetail (meat) BAF, because the transpiration process dominates the bioaccumulation process in plants. Lipid absorption plays a more important role in herbivores and lowers the biomagnification ratio (a smaller amount of pesticides flows to the next level of the food chain). According to the equivalent season approach, geographic locations with warmer climates facilitate pesticide bioaccumulation at a higher level of the terrestrial food web.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.