Abstract

A multichannel photoelectron technique is used to study the X-ray radiation emitted from a nanosecond diffuse discharge initiated in atmospheric pressure air in a point-plane electrode system with a gap width varying from 6 to 12 cm. The discharge is initiated by a voltage pulse with a moderate rate of rise of 1.1 × 1013 V/s and an amplitude of 160–280 kV. The radiation detected is found to be anisotropic bremsstrahlung of electrons accelerated to 30–80 keV in the near-cathode region early at the conduction phase. The observed features of the radiation and electrical behavior of the discharge are explained by strengthening of the near-cathode field owing to a short-term disappearance of the space-charge-related screening when the discharge passes from the bridging phase to the conduction one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.