Abstract
We explore analytically and numerically the existence of exact asymptotic spatiotemporal optical self-similar light bullets to the nonlinear Schrödinger equation with gain in the presence of an external source in (3+1)-dimensions. This model appertains to the description of self-similar wave propagation through asymmetric planar dual-core waveguide (DWG) amplifiers. The asymmetric DWG is composed of two adjoining, closely spaced, upper and lower waveguides, in which the lower one acts as a passive waveguide while the upper waveguide is an active one. Due to the linear coupling between them, we can control the dynamical behaviors of the wave propagating through the passive waveguide by controlling the wave in active waveguide. We explicate the mechanism to control the dynamical behaviors of these self-similar waves for two specific cases: (i) when the gain and width are hyperbolic functions and (ii) when the gain and width are periodic functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.