Abstract

Anticipating events occurrence (Temporal Expectancy) is a crucial capacity for survival. Yet, there is little evidence about the presence of cortical anticipatory activity from infancy. In this study we recorded the High-density electrophysiological activity in 9 month-old infants and adults undergoing an audio-visual S1–S2 paradigm simulating a lifelike “Peekaboo” game inducing automatic temporal expectancy of smiling faces. The results indicate in the S2-preceding Contingent Negative Variation (CNV) an early electrophysiological signature of expectancy-based anticipatory cortical activity. Moreover, the progressive CNV amplitude increasing across the task suggested that implicit temporal rule learning is at the basis of expectancy building-up over time. Cortical source reconstruction suggested a common CNV generator between adults and infants in the right prefrontal cortex. The decrease in the activity of this area across the task (time-on-task effect) further implied an early, core role of this region in implicit temporal rule learning. By contrast, a time-on-task activity boost was found in the supplementary motor area (SMA) in adults and in the temporoparietal regions in infants. Altogether, our findings suggest that the capacity of the human brain to translate temporal predictions into anticipatory neural activity emerges ontogenetically early, although the underlying spatiotemporal cortical dynamics change across development.

Highlights

  • The ability to anticipate the onset of relevant stimuli, known as Temporal Expectancy, is a fundamental skill because it allows us to orient our attention in time and adapt our behaviour towards upcoming events[1,2]

  • While in adults the Contingent Negative Variation (CNV) was spatially expressed as an anterior-positive/posterior-negative dipole, in infants the positive counterpart of this wave was localized more centrally, suggesting that at least partially different neural generators in adults and infants may underpin the CNV

  • We show that such activity relays on an adult-like CNV, extending the reliability of such component as an hallmark of temporal expectancy from adult[6,7,8,9] to the infant Event-related Potential (ERP) literature

Read more

Summary

Introduction

The ability to anticipate the onset of relevant stimuli, known as Temporal Expectancy, is a fundamental skill because it allows us to orient our attention in time and adapt our behaviour towards upcoming events[1,2]. 3-months can implement saccade-preceding ERPs towards lateralized, expected stimuli[16] It is still unclear whether this anticipatory activity is specific to motor planning/preparation or is more general in nature, being instantiated whenever the sensory environment is temporally structured and regardless of the need to implement stimulus-driven actions, like in the case of passive, central fixation paradigms[5]. In this ERP study we tried to address the specific question as to whether task-independent, anticipatory cortical activity preceding expected stimuli is operational at early age. The use of the same paradigm in adults and infants allowed us to qualitatively compare adults’ and infants’ neural anticipatory activity with the purpose of understanding whether (1) anticipatory neural mechanisms instantiated by temporal expectancy are already operating early in life and (2) these relay on similar or different spatiotemporal dynamics as compared to adults

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.